↓ Skip to main content

Cochrane Database of Systematic Reviews

Water fluoridation for the prevention of dental caries.

Overview of attention for article published in Cochrane database of systematic reviews, June 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Readers on

mendeley
75 Mendeley
Title
Water fluoridation for the prevention of dental caries.
Published in
Cochrane database of systematic reviews, June 2015
DOI 10.1002/14651858.cd010856.pub2
Pubmed ID
Authors

Iheozor-Ejiofor, Zipporah, Worthington, Helen V, Walsh, Tanya, O'Malley, Lucy, Clarkson, Jan E, Macey, Richard, Alam, Rahul, Tugwell, Peter, Welch, Vivian, Glenny, Anne-Marie

Abstract

Dental caries is a major public health problem in most industrialised countries, affecting 60% to 90% of school children. Community water fluoridation was initiated in the USA in 1945 and is currently practised in about 25 countries around the world; health authorities consider it to be a key strategy for preventing dental caries. Given the continued interest in this topic from health professionals, policy makers and the public, it is important to update and maintain a systematic review that reflects contemporary evidence. To evaluate the effects of water fluoridation (artificial or natural) on the prevention of dental caries.To evaluate the effects of water fluoridation (artificial or natural) on dental fluorosis. We searched the following electronic databases: The Cochrane Oral Health Group's Trials Register (to 19 February 2015); The Cochrane Central Register of Controlled Trials (CENTRAL; Issue 1, 2015); MEDLINE via OVID (1946 to 19 February 2015); EMBASE via OVID (1980 to 19 February 2015); Proquest (to 19 February 2015); Web of Science Conference Proceedings (1990 to 19 February 2015); ZETOC Conference Proceedings (1993 to 19 February 2015). We searched the US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization's WHO International Clinical Trials Registry Platform for ongoing trials. There were no restrictions on language of publication or publication status in the searches of the electronic databases. For caries data, we included only prospective studies with a concurrent control that compared at least two populations - one receiving fluoridated water and the other non-fluoridated water - with outcome(s) evaluated at at least two points in time. For the assessment of fluorosis, we included any type of study design, with concurrent control, that compared populations exposed to different water fluoride concentrations. We included populations of all ages that received fluoridated water (naturally or artificially fluoridated) or non-fluoridated water. We used an adaptation of the Cochrane 'Risk of bias' tool to assess risk of bias in the included studies.We included the following caries indices in the analyses: decayed, missing and filled teeth (dmft (deciduous dentition) and DMFT (permanent dentition)), and proportion caries free in both dentitions. For dmft and DMFT analyses we calculated the difference in mean change scores between the fluoridated and control groups. For the proportion caries free we calculated the difference in the proportion caries free between the fluoridated and control groups.For fluorosis data we calculated the log odds and presented them as probabilities for interpretation. A total of 155 studies met the inclusion criteria; 107 studies provided sufficient data for quantitative synthesis.The results from the caries severity data indicate that the initiation of water fluoridation results in reductions in dmft of 1.81 (95% CI 1.31 to 2.31; 9 studies at high risk of bias, 44,268 participants) and in DMFT of 1.16 (95% CI 0.72 to 1.61; 10 studies at high risk of bias, 78,764 participants). This translates to a 35% reduction in dmft and a 26% reduction in DMFT compared to the median control group mean values. There were also increases in the percentage of caries free children of 15% (95% CI 11% to 19%; 10 studies, 39,966 participants) in deciduous dentition and 14% (95% CI 5% to 23%; 8 studies, 53,538 participants) in permanent dentition. The majority of studies (71%) were conducted prior to 1975 and the widespread introduction of the use of fluoride toothpaste.There is insufficient information to determine whether initiation of a water fluoridation programme results in a change in disparities in caries across socioeconomic status (SES) levels.There is insufficient information to determine the effect of stopping water fluoridation programmes on caries levels.No studies that aimed to determine the effectiveness of water fluoridation for preventing caries in adults met the review's inclusion criteria.With regard to dental fluorosis, we estimated that for a fluoride level of 0.7 ppm the percentage of participants with fluorosis of aesthetic concern was approximately 12% (95% CI 8% to 17%; 40 studies, 59,630 participants). This increases to 40% (95% CI 35% to 44%) when considering fluorosis of any level (detected under highly controlled, clinical conditions; 90 studies, 180,530 participants). Over 97% of the studies were at high risk of bias and there was substantial between-study variation. There is very little contemporary evidence, meeting the review's inclusion criteria, that has evaluated the effectiveness of water fluoridation for the prevention of caries.The available data come predominantly from studies conducted prior to 1975, and indicate that water fluoridation is effective at reducing caries levels in both deciduous and permanent dentition in children. Our confidence in the size of the effect estimates is limited by the observational nature of the study designs, the high risk of bias within the studies and, importantly, the applicability of the evidence to current lifestyles. The decision to implement a water fluoridation programme relies upon an understanding of the population's oral health behaviour (e.g. use of fluoride toothpaste), the availability and uptake of other caries prevention strategies, their diet and consumption of tap water and the movement/migration of the population. There is insufficient evidence to determine whether water fluoridation results in a change in disparities in caries levels across SES. We did not identify any evidence, meeting the review's inclusion criteria, to determine the effectiveness of water fluoridation for preventing caries in adults.There is insufficient information to determine the effect on caries levels of stopping water fluoridation programmes.There is a significant association between dental fluorosis (of aesthetic concern or all levels of dental fluorosis) and fluoride level. The evidence is limited due to high risk of bias within the studies and substantial between-study variation.

Twitter Demographics

The data shown below were collected from the profiles of 75 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 1%
New Zealand 1 1%
Unknown 73 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 28 37%
Student > Postgraduate 11 15%
Student > Bachelor 9 12%
Student > Ph. D. Student 7 9%
Student > Doctoral Student 6 8%
Other 14 19%
Readers by discipline Count As %
Medicine and Dentistry 49 65%
Social Sciences 7 9%
Nursing and Health Professions 3 4%
Agricultural and Biological Sciences 3 4%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 11 15%

Attention Score in Context

This research output has an Altmetric Attention Score of 254. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 May 2017.
All research outputs
#22,496
of 7,926,335 outputs
Outputs from Cochrane database of systematic reviews
#56
of 8,724 outputs
Outputs of similar age
#865
of 226,689 outputs
Outputs of similar age from Cochrane database of systematic reviews
#3
of 254 outputs
Altmetric has tracked 7,926,335 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,724 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.1. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 226,689 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 254 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.